
M A R C D A V I S P U B L I C A T I O N S
www.marcdavis.me info@marcdavis.me

Programming with Characters

Bibliographic Reference:

Marc Davis and Michael Travers. "Programming with Characters." In: Proceedings of the First
International Conference on Intelligent User Interfaces in Orlando, Florida, ed. Wayne D. Gray, et al.,
ACM Press, 269-272, 1993.

PROGRAMMING WITH CHARACTERS

Michael Travers & Marc Davis

MIT Media Laboratory

20 Ames Street
Cambridge, MA 02139

(617) 253-0608
mt or mdavis@media.mit.edu

INTRODUCTION
Programs are hard to build, and even harder to understand
after they are built. We lack intuitive interfaces for visual-
izing and manipulating many parts of programs and the
ways in which these parts interact. Constraint systems have
addressed these problems. We generalize some of the
notions inherent in constraint systems to agent-based
systems, and explore the use of animated characters as
interface representations of agents. In particular, conflict
detection and resolution is dramatized by the use of
characters and their emotions. The history of their
interactions is presented as a narrative using video and
storyboard techniques. Building programs out of agents
and enabling users to manipulate program parts by interact-
ing with simple animated characters can aid relatively un-
skilled users in understanding and modifying complex sys-
tems.

FROM CONSTRAINTS TO AGENTS
We chose to explore the question of whether agents could
be used as the basis of an interactive design and program-
ming environment. Most direct manipulation environments
(i.e., MacDraw) are easy to use, but lack intelligence and
flexibility. The user cannot extend the system beyond the
simple operations provided and the system cannot learn
new methods or tasks.

These issues have been addressed by interactive constraint-
based systems such as SketchPad [4] and ThingLab [1].
Constraints are computational objects which combine
declarative and procedural characteristics. The declarative
part of a constraint specifies a condition that the constraint
will attempt to maintain (e.g., "The button width is greater
than the button text length."), while the procedural part
specifies techniques for bringing about the given state (e.g.,
"Move the right edge of the button until the button width is
greater than the button text length."). The major computa-
tional issue for constraint systems is how to resolve con-

flicts involving multiple constraints. SketchPad used nu-
merical relaxation for this purpose, while ThingLab used a
combination of planning techniques and relaxation. A fur-
ther problem of the constraint-based approach is the diffi-
culty of visualizing constraints and their interrelations so
that they can be understood and altered by the user.

We chose to investigate a new technique which, like con-
straints, makes use of the power of combining declarative
and procedural functionality in an interactive network, but
which offers a new approach to the above problems. We
represent programs as a collection of agents, which are
simple, individual mechanisms that accomplish a particular
task. The notion of agent derives from Minsky’s usage in
Society of Mind [3], which envisions the mind as a network
of interacting "mindless" parts. An agent has goals and
methods for achieving its goals, which may rely on other
agents achieving their goals. Constraints may be un-
derstood as a specialized type of agent.

The ability to learn and to adapt to new situations enables
an agent-based approach to resolve conflicts among multi-
ple agents. We have explored a strategy which utilizes in-
sights from Minsky's theory as well as some aspects of
case-based learning. If two or more agents are in conflict,
the agents involved remain unchanged; instead, a new su-
pervisor agent is created which knows how to manage the
agents involved in the particular conflict situation as well
as any new agents which may have been created through
user intervention. This strategy is based on Minsky’s no-
tion that one learns, not by debugging old agents, but by
adding new agents that know when the old agents are appli-
cable and when not. The concrete example of the conflict
and its resolution is stored in a case library to which the
supervisor agent refers in managing its supervisees. As the
case library grows, supervisor agents are able to find
resolutions to new conflict situations by referring to similar
situations stored in the case library.

Reconceptualizing computational processes in terms of
agents also facilitates the design and visualization of com-
plex interactive systems. As agents ourselves, we bring to
programming and to human-computer interaction a power-
ful cognitive and affective framework for dealing with
other agents. Our assumptions about how things with

To appear in the proceedings of the
1993 International Workshop on

Intelligent User Interfaces

agency behave, interact, and grow can be put to use in
designing more intuitive systems.

SCENARIO: INTERFACE TOOLS DESIGNER
We have been exploring our ideas about agents and charac-
ters within the domain of the Macintosh Common Lisp
Interface Tools Designer (IFT). IFT is a direct-manipula-
tion, graphical environment for creating interface objects
(dialogs, menus, buttons, etc.) in Macintosh Common Lisp.
An example of designing a dialog box and buttons in IFT is
shown in Figure 1.

FROM AGENTS TO CHARACTERS
Our notion of agents is related to but somewhat divergent
from recent work on “interface agents” [2]. An interface
agent is an intelligent intermediary between a user and a
computer system, often presented as a video image of a
person or animated character. It is an “agent” in the sense
of a travel agent who acts on behalf of the user. Our agents,
on the other hand, have their own goals (which, to be sure,
derive from that of the user or system designers). Rather
than acting as intermediaries between the user and a
computational environment, in our approach, the network
of agents constitutes the underlying computational environ-
ment itself.

How should agents be presented to the user? We are inves-
tigating the use of cartoon characters as a metaphor for
computational agents. Unlike "interface agents," which rep-
resent the user to the computational environment, our char-
acters represent agents (which make up the computational
environment) to the user. The stereotyped actions and gen-
eral lack of intelligence in agents suggest that cartoon
characters are a better interface representation than more
human-like characters.

However, we are still exploring the relationship between
agents and the characters that represent them. If a character
represents just one agent, it might seem too stupid even for
a cartoon. In our current implementation, we use a single
cartoon character to represent a collection of agents that all
work towards a common goal. On the other hand, this rep-
resentation will make it difficult for the user to view inter-
actions between those agents. One flexible solution would
be to allow the user to recursively peer into the heads of
characters, which might show multiple, smaller, stupider
characters working within.

Fig. 1: Macintosh Common Lisp Interface Tools Designer

Our system augments IFT with agents that perform tasks
such as keeping objects aligned or sized to fit their
contents. In our scenario these agents form two characters:
Ren and Stimpy. We borrow the Ren and Stimpy
characters from the popular cartoon show of the same
name which airs on the Nickelodeon cable television
channel. Ren and Stimpy are cartoon characters well suited
to the representation of agent conflict: they are simple
characters with singular driving passions (Ren is choleric
and Stimpy sanguine) whose lives are a series of conflicts
and reconciliations. In the world of IFT, Ren is the
character who cares about the alignment of objects (see
Figure 2), while Stimpy is concerned about making sure
that containing objects accommodate the objects they
contain (see Figure 3).

The simplicity and predictability of cartoon characters, as
well as their affective appeal, make them well suited to the
construction of narrative scenarios for explaining the inter-
actions of agents and for resolving conflicts between them.
We currently use an interactive storyboard (see below)
which makes use of the user's understanding of narrative
and comic-strip conventions in visualizing conflicts
between agents and facilitating conflict resolution. Clicking
on a character plays its video clip which expresses the
emotional state the character has in relation to the actions it
took at that point in the story. Representing conflicts
between agents by means of character and story is a
fortunate match because much of our narrative
comprehension focuses on the recognition and resolution
of conflicts. With the storyboard, users can understand the
origin of a conflict situation by means of a video story,
whose happy ending they can create by interactively teach-
ing the characters new skills which enable them to resolve
their conflict.

Fig. 2: “Ren”

In our example, Ren and Stimpy come into conflict over
two buttons, "Whistle" and "Beep." Through manipulating
the buttons Whistle and Beep in the Interface Tools
Designer, the user brings about a situation in which the
methods which Ren has for accomplishing his goal (in this
case the right alignment of button Whistle and button
Beep) and the methods which Stimpy has for
accomplishing his goal (in this case making sure that the
button Beep is large enough to fit its button text) come
into conflict. Once the conflict is detected, a video
storyboard is created which presents the history of the
conflict to the user (see Figure 5). By clicking on the
frames of the storyboard QuickTime movies are played
which express the emotional states of Ren and Stimpy; the
captions for each frame explain Ren and Stimpy's
motivations and the dilemma they have gotten into.
Thumbnails of the disputed objects depict key phases in the
progression of the conflict. Thus the story of Ren and
Stimpy's conflict is presented to the user.

After having played the video storyboard through, the user
selects a character to interact with in order to solve the
narrative conflict. The user trains the selected character in a

new skill which enables the characters to avoid the conflict.
This training takes place through direct manipulation of the
objects involved in the conflict between the characters. The
user offers a solution by showing the selected character
what it should do in order to avoid the conflict situation.
The character then responds to the user in text explaining
its understanding of the proposed solution which the user
confirms if correct. Behind the scenes, this process of
interactive debugging results on the one hand, in the
creation of a new agent within the character (i.e. a new
goal-method pair which in effect adds a new method to the
character for achieving the character's goal), and on the
other hand, in the storage of this conflict resolution within
the case library. When the system encounters this (or a
similar) situation again, the conflict manager refers to the
case library in order to manage which agents in the relevant
characters get activated so as to avoid the potential conflict
situation.

The system architecture (Fig 4) thus includes multiple
characters, each of which can have multiple agents (but all
must share the same goal), and a central conflict manager
with associated case library.

Fig. 4: System architecture with detail of one character

After having resolved the conflict situation, the user sees
an expanded video storyboard showing in one frame an
ebullient character pleased at having found a solution to the
conflict and in the next frame a raucous dance and song,
entitled "Happy Happy Joy Joy," celebrating the
reconciliation of Ren and Stimpy. The conflict resolved,
the story over, the video storyboard departs until the next
time that Ren and Stimpy get into a conflict which must be
visualized to the user so that through "narrative debugging"
the user can program the system's characters to better meet
the user's needs.

Fig. 3: “Stimpy”

FUTURE WORK
We are currently exploring extensions and improvements
to our existing system in the following areas: increasing the
range and complexity of narratives which depict the
interaction, conflict, and resolution between characters;

supporting better integration between the video storyboard
representation and the actual objects of characters' concern
(e.g. showing characters manipulating and fighting over
computational and interface objects); and improving the
selection mechanism for video clips to allow automatic
retrieval of relevant segments. These and related issues are
being explored by the authors in the context of ongoing
doctoral research.

CONCLUSIONS
Our prototype points toward future systems which draw
upon and augment users' cognitive, affective, and
experiential capabilities. By building programs as sets of
agents, representing these sets of agents as cartoon
characters, and affording user interaction with these
characters and their behaviors by means of narrative and
video storyboard techniques, our system supports the
activity of non-programmers in a complex computational
environment.

ACKNOWLEDGMENTS
We would like to acknowledge the support of our sponsors
at the MIT Media Laboratory as well as the support of the

Mitsubishi Electric Research Laboratories in Cambridge,
Massachusetts. Also thanks go to our advisors and
colleagues at the MIT Media Laboratory and especially the
members of the Narrative Intelligence Reading Group.

REFERENCES
1. Borning, Alan. ThingLab: A Constraint-Oriented

Simulation Laboratory, Xerox TR SSL-79-3, 1979.

2. Laurel, Brenda. "Interface Agents: Metaphors with
Character." In: The Art of Human-Computer Interface
Design. ed. Brenda Laurel. Addison-Wesley, Reading,
Massachusetts, 1990.

3. Minsky, Marvin. Society of Mind. Simon & Schuster,
New York, New York, 1985.

4. Sutherland, Ivan. Sketchpad: A Man-machine
Graphical Communications System, MIT PhD Thesis,
1963.

Fig. 5: First four panels of the video storyboard for Ren and Stimpy

	INTRODUCTION
	FROM CONSTRAINTS TO AGENTS
	FROM AGENTS TO CHARACTERS
	SCENARIO: INTERFACE TOOLS DESIGNER
	FUTURE WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

