
M A R C D A V I S P U B L I C A T I O N S
www.marcdavis.me info@marcdavis.me

Programming with Characters

Bibliographic Reference:

Marc Davis and Michael Travers. "Programming with Characters." Short Paper In: Conference
Companion for CHI '92 in Monterey, California, ACM Press, 1992.

PROGRAMMING WITH CHARACTERS

Michael Travers & Marc Davis
MIT Media Laboratory

20 Ames Street
Cambridge, MA 02139

(617) 253-0608
mt or mdavis@media.mit.edu

INTRODUCTION
Programs are hard to build, and even harder to understand
after they are built. We lack intuitive interfaces for visual-
izing and manipulating many parts of programs and the
ways in which these parts interact. Constraint systems
have addressed these problems. We generalize some of the
notions inherent in constraint systems to agent-based
systems, and explore the use of animated characters as in-
terface representations of agents. In particular, conflict
detection and resolution is dramatized by the use of char-
acters and their emotions. The history of their interactions
is presented as a narrative using video and storyboard tech-
niques. Building programs out of agents and enabling us-
ers to manipulate program parts by interacting with simple
animated characters can aid relatively unskilled users in
understanding and modifying complex systems.

FROM CONSTRAINTS TO AGENTS
We chose to explore the question of whether agents could
be used as the basis of an interactive design and program-
ming environment. Most direct manipulation environments
(i.e., MacDraw) are easy to use, but lack intelligence and
flexibility. The user cannot extend the system beyond the
simple operations provided and the system cannot learn
new methods or tasks.

These issues have been addressed by interactive constraint-
based systems such as SketchPad [4] and ThingLab [1].
Constraints are computational objects which combine de-
clarative and procedural characteristics. The declarative
part of a constraint specifies a condition that the constraint
will attempt to maintain (i.e., "The button width is greater
than the button text length."), while the procedural part
specifies techniques for bringing about the given state (i.e.,
"Move the right edge of the button until the button width is
greater than the button text length."). The major computa-
tional issue for constraint systems is how to resolve con-
flicts involving multiple constraints. SketchPad used nu-
merical relaxation for this purpose, while ThingLab used a
combination of planning techniques and relaxation. A
further problem of the constraint-based approach is the
difficulty of visualizing constraints and their interrelations
so that they can be understood and altered by the user.

We chose to investigate a new technique which, like con-
straints, makes use of the power of combining declarative
and procedural functionality in an interactive network, but
which offers a new approach to the above problems. We
represent programs as a collection of agents, which are
simple, individual mechanisms that accomplish a particular
task. The notion of agent derives from Minsky's usage in
Society of Mind [3], which envisions the mind as a net-

work of interacting "mindless" parts. An agent has goals
and methods for achieving its goals, which may rely on
other agents achieving their goals. Constraints may be
understood as a specialized type of agent.

The ability to learn and to adapt to new situations enables
an agent-based approach to resolve conflicts among multi-
ple agents. We have explored a strategy which utilizes in-
sights from Minsky's theory as well as some aspects of
case-based learning. If two or more agents are in conflict,
the agents involved remain unchanged; instead, a new su-
pervisor agent is created which knows how to manage the
agents involved in the particular conflict situation as well
as any new agents which may have been created through
user intervention. This strategy is based on Minsky's no-
tion that one learns, not by debugging old agents, but by
adding new agents that know when the old agents are ap-
plicable and when not. The concrete example of the con-
flict and its resolution is stored in a case library to which
the supervisor agent refers in managing its supervisees. As
the case library grows, supervisor agents are able to find
resolutions to new conflict situations by referring to similar
situations stored in the case library.

Reconceptualizing computational processes in terms of
agents also facilitates the design and visualization of com-
plex interactive systems. As agents ourselves, we bring to
programming and to human-computer interaction a power-
ful cognitive and affective framework for dealing with
other agents. Our assumptions about how things with
agency be-have, interact, and grow can be put to use in
designing more intuitive systems.

FROM AGENTS TO CHARACTERS
Our notion of agents is related to but somewhat divergent
from recent work on "interface agents" [2]. An interface
agent is an intelligent intermediary between a user and a
computer system, often presented as a video image of a
per-son or animated character. It is an "agent" in the sense
of a travel agent who acts on behalf of the user. Our
agents, on the other hand, have their own goals (which, to
be sure, derive from that of the user or system designer).
Rather than acting as intermediaries between the user and a
computational environment, in our approach, the network
of agents constitutes the underlying computational envi-
ronment itself. How should agents be presented to the
user? We are investigating the use of cartoon characters as
a metaphor for computational agents. Unlike "interface
agents," which represent the user to the computational en-
vironment, our characters represent agents (which make up
the computational environment) to the user. The stereo-
typed actions and general lack of intelligence in agents
suggests that cartoon characters are a better interface

The simplicity and predictability of cartoon characters, as
well as their affective appeal, make them well-suited to the
construction of narrative scenarios for explaining the inter-
actions of agents and for resolving conflicts between them.
We currently use an interactive storyboard (see below),
which makes use of the user's understanding of narrative
and comic-strip conventions in visualizing conflicts be-
tween agents and facilitating conflict resolution. Clicking
on a character plays its video clip and animates the accom-
panying depiction of the actions the character took at that
point in the story. Representing conflicts between agents by
means of character and story is a fortunate match because
much of our narrative comprehension focuses on the rec-
ognition and resolution of conflicts. With the storyboard,
users can understand the origin of a conflict situation by
means of a video story, whose happy ending they can cre-
ate by interactively teaching the characters new skills
which enable them to resolve their conflict.

representation than more human-like characters. However,
we are still exploring the relationship between agents and
the characters that represent them. If a character represents
just one agent, it might seem too stupid even for a cartoon.
In our current implementation, we use a single cartoon
character to represent a collection of agents that all work
towards a common goal. On the other hand, this
representation will make it difficult for the user to view
inter-actions between those agents. One flexible solution
would be to allow the user to recursively peer into the
heads of characters, which might show multiple, smaller,
stupider characters working within.

SCENARIO: DIALOG DESIGNER
We have been exploring our ideas about agents and char-
acters within the domain of the Macintosh Common Lisp
Interface Tools Designer (IFT). IFT is a direct-
manipulation, graphical environment for creating interface
objects (dialogs, menus, buttons, etc.) in Lisp. Our system
augments IFT with agents that perform tasks such as
keeping objects aligned or sized to fit their contents. The
storyboard below shows what happens when two agents
come into conflict. The situation is presented to the user,
who trains one agent in a new skill which lets the agents
avoid the conflict. Space requires that some steps and ex-
planation be omitted. We hope the storyboard offers the
reader at least a partial experience of our approach to pro-
gramming with character(s).

REFERENCES
1. Borning, Alan. ThingLab: A Constraint-Oriented
Simulation Laboratory, Xerox TR SSL-79-3, 1979.
2. Laurel, Brenda. "Interface Agents: Metaphors with
Character." In: The Art of Human-Computer Interface
Design. ed. Brenda Laurel. Addison-Wesley, Reading,
Massachusetts, 1990.
3. Minsky, Marvin. Society of Mind. Simon & Schuster,
New York, New York, 1985.
4. Sutherland, Ivan. Sketchpad: A Man-machine
Graphical Communications System, MIT PhD Thesis,
1963.

First four panels of the video storyboard for Ren and Stimpy

	Michael Travers & Marc Davis
	FROM CONSTRAINTS TO AGENTS
	FROM AGENTS TO CHARACTERS
	SCENARIO: DIALOG DESIGNER
	REFERENCES

