
M A R C D A V I S P U B L I C A T I O N S
www.marcdavis.me info@marcdavis.me

Active Capture Design Case Study: SIMS Faces

Bibliographic Reference:

Ana Ramirez Chang and Marc Davis. "Active Capture Design Case Study: SIMS Faces." In: Proceedings of Conference on Designing for User
eXperience (DUX 2005) in San Francisco, California, 2005.

2

Active Capture Design Case Study: SIMS Faces

Abstract
We present a design case study for the SIMS Faces
application. The SIMS Faces application is an Active
Capture [1] application that works with the user to take
her picture and record her saying her name for
inclusion on the department web page. Active Capture
applications are systems that capture and direct human
action by working with the user, directing her and
monitoring her progress, to complete a common goal,
in this case taking her picture when she is smiling and
looking at the camera. In addition to producing a
working Active Capture application, the project also
included studying the design of Active Capture
applications. The team conducted an ethnographic
study [2] to inform the design of the interaction with
the user, prototyped a set of tools to support the design
process, and iterated a design process involving
bodystorming, a Wizard-of-Oz study, the prototyped
tools, and a user test of the implemented application.

Keywords
Interaction Design, Interdisciplinary Design,
Prototyping, System Design, User-Centered Design /
Human-Centered Design, User Experience, User
Interface Design, Audio, Video, Vision, Visualization.

Project/problem statement
We developed the SIMS Faces application, an Active
Capture [1] application that works with the user to
record her saying her name, and take her picture for
inclusion on the department web page. The application
allows the department staff to easily capture a picture

Ana Ramírez Chang

Garage Cinema Research

Berkeley Institute of Design

Computer Science Division

University of California at Berkeley

Berkeley, CA 94720

anar@cs.berkeley.edu

Marc Davis

Garage Cinema Research

School of Information Management and Systems

University of California at Berkeley

Berkeley, CA 94720

marc@sims.berkeley.edu

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright © 2005 AIGA | The
professional association for design.

3

of each new student and an audio clip of each student
pronouncing her name without having to take the
pictures and record the names manually. The new
students can use the application as many times as they
would like without placing a burden on the department
staff. The application was tested over the spring
semester 2004 and will be deployed for incoming
students for the fall 2005 semester. In developing the
SIMS Faces application, we had two main goals: 1)
design and implement an application to be deployed in
the University of California at Berkeley, School of
Information Management and Systems (SIMS); and 2)
study and improve the design process for Active
Capture applications. In this paper we narrate the
design and implementation of the SIMS Faces
application and present subprojects that emerged
during the project to study and support the design of
Active Capture applications. These subprojects include
a set of contextual interviews to inform the design of
the interaction with the user, and a set of tools to
support the design process.

Background
ACTIVE CAPTURE
”Active Capture” is a new paradigm in multimedia
computing and applications that brings together

capture, interaction, and processing and exists in the
intersection of these three capabilities (See Figure 1).
Most current human-computer interfaces largely
exclude media capture and exist at the intersection of
interaction and processing. In order to incorporate
media capture into an interaction without requiring
signal processing that would be beyond current
capabilities, the interaction must be designed to
leverage context from the interaction. For example, if
the system wants to take a picture of the user smiling,
it can interact with the user to get them to face the
camera and smile and use simple, robust parsers (such
as an eye finder and mouth motion detector) to aid in
the contextualized capture, interaction, and processing.

In this paper, we will refer to two Active Capture
applications, the SIMS Faces application (the
development of which this paper narrates) and the
Kiosk Demo. Both systems are shown in a video at:
www.cs.berkeley.edu/~anar/chang_simsfaces_CASE.mpg
The SIMS Faces application works with the user to
achieve two goals, take her picture, and record her
saying her name. The Kiosk Demo is similar to a picture
kiosk in the mall, but instead of taking the user’s
picture, it takes a few videos of the user, and
automatically creates a personalized commercial or

Capture

Active
Capture

Interaction

Processing

Direction/
Cinematography

 Human
Computer

 Interaction

Computer
 Vision/

Audition

Figure 1. Active Capture brings

together capture, interaction and

processing and exists in the

intersection of these three

capabilities.

Figure 2. Pictures of an Active

Capture participant performing a

head turn. The figure shows both the

original captured footage and

corresponding images from an

automatically generated Terminator II

trailer. See a video of the system at:

www.cs.berkeley.edu/~anar/chang_si

msfaces_CASE.mpg

Before head turn After head turn

4

movie trailer staring the user. There are two parts in
the Kiosk Demo, the Active Capture part works with the
user to capture a shot of her looking at the camera and
screaming, and a shot of her turning her head to look
at the camera. The second part of the Kiosk Demo uses
Adaptive Media technology described in [3, 4]. The
shots of the user screaming and turning her head are
automatically edited into a variety of commercials and
movie trailers including a 7up commercial, an MCI
commercial, and the Terminator II movie trailer. Figure
2 shows how the head turn is parsed into the
Terminator II movie trailer.

COMPONENTS OF ACTIVE CAPTURE APPLICATIONS
Active Capture applications are made of two
interdependent components: the interaction script and
the action recognizers. The interaction script together
with input from the action recognizers allows the
computer and user to work together to achieve the

desired action. In the SIMS Faces application, the
computer and user work together to record the user
saying her name and to take her smiling picture.

The interaction script describes how to work with the
user to achieve the common goal. It is a flow chart that
describes what the system says or does to elicit the
desired action from the user and what to do when
something goes wrong. There is much that can go
wrong in the interaction that the interaction script must
be able to handle. Not only might the system’s
recognizers make incorrect inferences, the participant
may misunderstand the system’s instruction or give
performances that do not meet the programmed
requirements. As a result, the system must adopt
strategies for directing the user and provide
appropriate feedback to shape the desired
performance. For example, when the user is getting her
picture taken, she may be partially out of frame. The
application asks her to move so she is in the frame:”I
don’t entirely see you, perhaps sitting down or standing
on a stool might help. Now smile.” This corrective
interaction technique is known as mediation. Mediation
techniques are used to resolve ambiguity in systems
where there exists an apparent discrepancy between
the system’s model of the state of the world, in this
case, the physical position of the user, and the state of
the world. Table 1 lays out an abbreviated version of
the interaction script for the SIMS Faces application.
The action recognizer analyzes and recognizes human
actions using simple multimedia parsers (e.g. eye
finding, gross motion analysis, sound detection) and
the context of interaction including expectations about
what the user will do. The action recognizer is driven

Figure 3. A simplified version of the

picture-taking module in portion of

the SIMS Faces application.system.

The text in quotes describes the

interaction script (above pink strips).

The set of (blue) segments on the

(grey) parser strips describe the

smile recognizer. See Appendix A for

the whole SIMS Faces application.

“Look at camera, smile …” “Great…”

time

>1s

Motion
“Please stand still …”

No eyes
“I can’t see your eyes …”

Motion
no motion

Eyes
eyes

Mouth Motion
motion

capture

>1s

No Mouth Motion
“You picture will be nicer …”

5

and shaped by the interaction script. In the context of
the interaction, the input from the parsers can be
interpreted much differently than if used alone. For
example, the likelihood that the motion detected in the
user’s mouth after she is asked to smile is a smile is
very high. An action recognizer for the desired action,
in this case the user smiling, can be defined as the
automatic recognition of a mouth motion by the
multimedia parser after the issuance of an instruction
(e.g. “trigger”) to get the user to smile by the
interaction script combined together into a control
process with feedback that uses mediation to resolve
ambiguity about user and system behavior and
collaboratively corrects user and system errors. Figure
3 shows the relationship between the interaction script
and the action recognizer in a simplified version of the
picture-taking module part of the SIMS Faces
application.

TEAM MEMBERS
The design of Active Capture applications requires a
highly interdisciplinary team. Table 2 shows how each
team member contributed to the project, her
background, and her seniority level. Note the diversity
in background in many of the groups. This diversity is
essential in teams working on developing Active
Capture applications. Since Active Capture applications
bring together capture (which uses techniques and
know-how from photography and film production),
interaction (which uses techniques and ideas from HCI,
CSCW, performance studies, and various design
traditions), and processing (which uses technology and
algorithms from computer science and multimedia
signal processing), the team designing an Active
Capture application must also represent and synthesize
this diverse range of skills and disciplines.

Welcome

Prompt Welcome to SIMS and the SIMS Faces application developed by Garage Cinema Research.

Position

Prompt Please stand on the white marks on the floor and look at the camera.

Mediation While … Say …

 Can’t see guest Hello? I can’t see you. Please make sure you are standing on the white

marks on the floor and that you are looking at the camera.

 Guest not framed Hmm, I can’t see all of you. Please be sure you are standing on the

white marks on the floor and look at the camera.

 Can’t find eyes I can’t see your eyes. Please make sure you are facing the camera so

that your name will be recorded clearly.

Closing That’s great. Next we will record your name so people will know how to pronounce it.

Name

Prompt Please look at the camera and state your full name now.

Mediation While … Say …

 Didn’t hear anythingI didn’t hear anything. I’d like you say your first name and your family

name. Now please state your name.

 Utterance too short Wow, that’s pretty short for a name. Just in case, let’s rerecord your

name. Please be sure to state your first and last name.

 Utterance too long I heard you say something, but it sounded too long for a name. Let’s try

again. Please say your full name, that is your first and last name now.

Closing Thanks for saying your name. Now we are going to take your picture.

Picture

Prompt Please stand on the white marks on the floor and look at the camera. Smile.

Mediation While … Say …

 Not standing still Please stand still while I take our picture. OK, smile.

 Can’t see eyes I can’t see your eyes. Perhaps you are wearing glasses or a hat. Please

remove them and look at the camera. Smile.

 Can’t find smile Your picture will be nicer if you smile. Please look at the camera and

smile.

Closing That was really great.

Thanks

Prompt Thank you for using the SIMS Faces application developed by Garage Cinema Research.
.
Table 1. SIMS Faces application abbreviated interaction script.

6

PROJECT DATES AND DURATION
We began working on the SIMS Faces project in
January 2003 and were ready to run our Wizard-of-Oz
study in March 2004. By December 2004, we had an
implemented prototype ready to test with eight users.
We are currently working on the next iteration to be
used by the entering class of 40 masters students at
the University of California at Berkeley School of
Information Management and Systems (SIMS) in
August 2005.

Challenge
The challenges in designing and implementing Active
Capture applications come from the diverse team, the

complex system, the interaction with the user, and the
available parsers.

The diverse team presents extra challenges in
communication among the team members. Computer
scientists may be able to work on the application
together using control flow diagrams or finite state
machine diagrams, but if the only artifacts,
representations, and discourses used in the design
process are those of computer science then the film
and theatre team members will not be able to
contribute to the design. The team needs a description
of the application that all members of the team
understand and can contribute to. The representation
must encapsulate the control flow of the interaction
script along with the description of the action
recognizer and the relation between the two. Since the
interdependence between the action recognizer and the
interaction script is so important in Active Capture
applications, it is very important the whole team
understand how they interact in the application.

The interdependence between the design of the
interaction script and the action recognizer means the
team needs to be able to iterate many times on the
design of the application, requiring a rapid iteration
cycle.

The interaction with the user presents its own set of
challenges. If the user is going to work with the
system, and be directed by the system, the interaction
with the system must be of high quality. The interaction
script must describe how to work with the user, most
importantly, what to do in the cases where mediation is
necessary.

Professor

PhD Student

Undergraduate

Pr
o
je

ct
 L

ea
d

A
d
vi

si
n
g

Pr
o
fe

ss
o
rs

E
th

n
o
g
ra

p
h
ic

S
tu

d
y

V
is

u
al

 L
an

g
u
ag

e
D

es
ig

n

B
o
d
ys

to
rm

in
g

W
iz

ar
d
-o

f-
O

z
S
tu

d
y

Im
p
le

m
en

ta
ti
o
n

 Jennifer Mankoff

 Ka-Ping Yee

 Jeffrey Heer

 Ana Ramírez Chang

 Pauline JoJo Chang

Computer Science

Leo Choi

 Marc Davis

Information Science

Nathaniel Good

 Arian Saleh

 William Tran

Film & Theatre
Brett Fallentine
Rita Chu

Graphic Design
My Huynh

Table 2 Diversity
of teams on the
project.

Cognitive Science Madhu Prabaker

7

The parsers that are applicable to a given Active
Capture application can be limited by the constraint to
run in real-time, the suitability of the interaction
necessary to provide relevant contextual constraint to
the parser, or by the sensors available to provide data
to the parsers. The team must figure out how to design
the interaction script to make use of the given parsers
and elicit the desired action.

Solution

PROCESS
In approaching this project, we looked at existing
Active Capture applications, and then implemented the
SIMS Faces application. Along the way we developed
prototypes of tools to support the design process and
studied the interaction between the user and the
system. Figure 4 shows an overview of our design
process and where the subprojects fit in.

We looked at the head turn and scream Active Capture
modules in the Kiosk Demo. The scream module asks
the user to look at the camera and SCREAM! It ensures
the scream is long enough and loud enough. The head
turn module asks the user to look away from the
camera and then to turn her head to look at the
camera. It uses eye detection, gross motion, and head
motion and ensures the turn is slow enough, begins
with the user looking away from the camera, and ends
with the user looking at the camera. Figure 5 shows the
action recognizer and the interaction script for the head
turn Active Capture module.

As our team worked on the design and implementation
of the SIMS Faces application, we developed a design
process for creating Active Capture applications
including bodystorming, a Wizard-of-Oz study, and a
user test with an implemented version [5] and
prototypes of tools to help us during this process.
These new tools have not yet been formally evaluated,
but were extremely useful to our team as we worked on
the project. In addition to the tools, we also developed
strategies and a design space for the creation of Active
Capture interaction scripts.

Figure 4. Overview of SIMS Faces system design process with

subprojects.

User
Test

Implementation

Action
Recognizer

Design

Wizard-of-Oz
User Study

Bodystorming

Desired
Action

Contextual Interviews

ACAL
(Active Capture

Authoring Language)

Action Recognizer Design
Tool

8

SOLUTION NARRATION

Although we formalized the design process for
designing Active Capture applications at the end of our
project, we will present it first to give the reader an
overview of designing Active Capture applications. After
the description of the design process, we will describe
each of the subprojects that resulted in a set of tools
and design strategies to support the design process.

ACTIVE CAPTURE DESIGN PROCESS
Based on our experience developing the SIMS Faces
application, we formalized the design process of Active
Capture applications [5]. As we developed the
application, we strived to minimize each iteration cycle,
maximizing the number of iterations possible.
Bodystorming [6] and a Wizard-of-Oz study allowed us
to reduce the cost of iteration. Figure 6 shows the
design process we used.

BODYSTORMING
Our design process began with the desired action in
mind and a bodystorming session to inform the first draft
of the interaction script. Bodystorming is the technique
of acting out full body contextual interactions. It is
similar to paper prototyping as it allows us to rapidly
debug a full body interaction using a low fidelity medium.
It allows for rapid low cost iteration at the beginning of
the design process. With the desired scenario in mind,
the design team acted out different variations of the
interaction script and various reactions to the script
(what could go wrong in the interaction). We did not
know at the time we were bodystorming, but we now
know we should have recorded these sample interactions
to provide sample data for use in the design of the action
recognizers and interaction script. The bodystorming
session for the design of an Active Capture module to
interactively take the user’s photo raised and attempted
to answer many questions including:

How will we get her to stand in front of the camera?
What if she is moving too much to take her picture?
What if she is not framed properly?
What if her eyes are closed?
What if she doesn’t smile?

These questions informed the draft of the interaction
script.

WIZARD-OF-OZ USER STUDY
With a draft of the interaction script and digital clips for
each command, instruction, or trigger, we ran a Wizard-
of-Oz study. See Figure 7 for a diagram of the room
setup. In the study, the participants were led into a
room divided by a green curtain. The mock application
was set up on one side and the “wizard,” a team
member, on the other. The participant was led to

Figure 5. The head turn Active

Capture module. In the head turn

module, the user is asked to look

away from the camera and stand still.

Next she is asked to turn her head to

look at the camera. The system

ensures the head turn is long enough

and not too fast, and ends with the

user looking at the camera and not

moving. See Figure 2 for images of a

user at the beginning and end of the

head turn. The interaction script (the

pink text in quotes) is abbreviated to

fit in the figure. See Appendix B for a

larger version of this figure.
time

no motion

head turning

no motion

eyes

no eyes

"Please face left..." "Turn to face the camera..."

1.5 - 4 sec
> 1.5 sec

< 1 sec
< 4.5 sec

< 3.5 sec
> 0.25 sec

"Great!"

> 0.9 sec

capture

Motion

Eyes

“Go Ahead”
0.25-1.25s

"Please stand still..."
0.25-2.75s

"Didn’t move..."
0.25-2.75s

"Didn’t look at camera..."
0.25-2.75s

0.25-2.75s
"Please look at end of turn..."

0.25-2.75s
"Please turn slower..."

"Please look away..."

motion

eyes

9

believe the room was divided so the study would not
disturb other people working in the room. The “wizard”
monitored the participant’s actions via a wireless
camera and selected the clips to play on a computer
behind the curtain. The computer played the clips
through speakers situated next to the computer
believed to be running the SIMS Faces application. (See
Figure 7. Lab setup for Wizard-of-Oz user study.).

Since humans react differently to computers than they
do to other humans, the Wizard-of-Oz study was very
important. It simulated the human-computer
interaction that bodystorming cannot simulate because
the interaction is limited to between humans.

In addition to testing the flow of the interaction, the
Wizard-of-Oz study tested and revealed the triggers in
the interaction script (the words or phrases that make
the user react). The interaction script is designed with
triggers, some may work well, others may not result in
the desired reaction and there may be still others that
weren’t intended as triggers. For example, in the SIMS
Faces application, the system offers to tell the user a
joke to get her to smile after a few failed attempts. “Let
me tell you a joke. A guy walked into a bar, ow!” We
expected the “ow” to be a trigger for a smile, but it
turns out “Let me tell you a joke” also triggered a
smile.

The data collected in the Wizard-of-Oz study provided
realistic examples with close to realistic timing details
of the interaction and resulting actions. This data was
crucial for the design of the action recognizer, in this
case, the “smile” recognizer. The refined set of possible

Figure 7. Lab setup for Wizard-of-Oz user study.

C

Guest

Wizard

Computer

playing

commands
Speakers

Camera

Video
of

Guest

Dummy
Computer

Green
Curtain

Green Screen

Figure 6. Active Capture design process.

User Study

Implementation

Action
Recognizer

Design

Interaction
Script

More Realistic
Sample Data

Refined Possible
Actions

Wizard-of-Oz
User Study

Script Draft

Possible
Actions

Rough Sample
Data

Bodystorming

Desired
Action

10

actions and realistic sample data allow the designers to
iterate on the script and design the recognizer for the
desired action. With these components in place, we
were ready to implement the application and evaluate it
with a traditional user study.

 DESIGNING ACTION RECOGNIZERS
An action recognizer defines the desired human
response in terms of the multimedia parsers in the
context of the interaction script. The sample data from
the Wizard-of-Oz study contains useful examples of the
action in terms of the multimedia parsers and their
relation to the triggers. We used this data to look for
reliable patterns in the data to form a new action
recognizer. In Figure 8, the peak in mouth motion after
the user is asked to smile corresponds to her smiling.

SUBPROJECTS
As we looked at the existing Active Capture applications
and began work on the SIMS Faces application, we
realized our design process for creating Active Capture
applications that use computer-human interaction to
direct human action would benefit from understanding
more about how humans direct human action. We also
realized we needed a better way to talk about the
emerging design as a team, and in particular, we
needed a representation of the design the whole team
could understand and work on. To address the former
challenge, we conducted a set of contextual interviews
with experts in human-human interaction of a similar
nature, that is, humans who direct their “users.” To
address the later challenge, we developed a visual
authoring language, ACAL (Active Capture Authoring
Language).

CONTEXTUAL INTERVIEWS
As we developed strategies by which to improve our
Active Capture applications, we realized that a more
thorough investigation of the design space would
benefit not only the design of our current Active
Capture scenarios, but that of any application in which
a computer system could be used to automatically
capture, analyze and provide corrective feedback to
physical human action. In an effort to inform the design
of Active Capture scenarios and design patterns for use
in computer-human interaction, we conducted a series
of contextual interviews with human-human interaction
experts [2].

The people interviewed included two film and theater
directors, a children’s portrait photographer, a golf
instructor, an aikido instructor, a 911 emergency
operator, and a telephone triage nurse. These
interviews revealed successful direction and mediation
techniques used by experts in human-human

Figure 8. The user's smile corresponds with a peak in mouth

motion after the trigger to smile.

Smile

Trigger

Mouth
Motion

Mouth
Y-position

11

interaction under different circumstances. For example,
the 911 operator is an expert in communicating and
getting feedback over a low bandwidth connection (the
phone). Our interviews uncovered numerous strategies
employed by experts to guide specific human actions
including different design strategies, direction and
feedback strategies, and mediation strategies [2].
Included are strategies such as graceful failure,
progressive assistance, and freshness. Graceful Failure
recommends when all else fails, the system provide the
subject natural exits from the interaction. Progressive
Assistance suggests the system address repeated
problems with increasingly targeted feedback.
Freshness suggests the system avoid repeating
utterances, even when giving an instruction nearly
identical to a previous one.

ACAL – ACTIVE CAPTURE AUTHORING LANGUAGE
In order to make use of the varied experience on our
design team, we needed a way to describe the
application so the whole team could understand it. To
this end, we developed a visual authoring language.
The visual authoring language had to help all members
of the design team understand and iterate on the
interaction script, the action recognizer and the
interdependence between the two. It had to be able to
express the control flow details from the interaction
script and the timing details from the action recognizer
together. Active Capture interactions appear natural
and intuitive to the user, but involve considerable
complexity in the system’s program for dealing with the
wide variety of possible states and transitions in the
interaction script. As such, the Active Capture design
process requires representations that can help Active
Capture designers manage the complexity of the
interaction script and the action recognizer in the

design process, especially on multidisciplinary design
teams. We (Ka-Ping Yee and I) began by looking at
existing visual scripting languages, the three most
relevant languages are state transition diagrams,
statecharts [7] and hypermedia authoring systems.

State Transition Diagrams
State transition diagrams are made up of states
connected by transitions. They have the advantage that
they are standard and many people understand how
they work and how to use them, but are bad at
handling time, have no way of expressing concurrent
actions, are a flat description, and in practice need
extra variables to keep track of some state. Figure 9
shows the head turn application as a state transition
diagram. Many of the self-looping edges in the graph
are used to keep track of the passage of time. There
are quite a few extra variables that keep track of state
related to mediation. For example, one variable keeps
track of how many times the actor has attempted the
performance, in order to prevent the actor from having
to repeat the loop forever without ever succeeding. Two
observations cannot be easily monitored at the same
time: first, the application checks to make sure the
actor is standing still, then it checks to make sure the
actor is looking at the camera. While it is checking to
make sure the actor is looking at the camera, the
program assumes that the actor is still standing still,
but it has no way of monitoring these observations
concurrently. While state transition diagrams are
standard and many people already understand how to
read them, they are very tedious to create and once
created are difficult to reason about. When looking at a
state transition diagram one of the most difficult things
to reason about is the passage of time.

Figure 9. The Head Turn finite state
machine. See Appendix C for a larger
version.

12

Statecharts
Statecharts [7] are similar to state transition diagrams
but they include various additional notational features
to express hierarchy, orthogonal combinations, and
timeouts. Hierarchy is expressed by drawing
statecharts within individual states. In Figure 11 the
steps to take when the actor turned her head too fast
are encapsulated in one statechart node with more
specific statechart nodes inside. This helps in reasoning
about a statechart.

The ability to express orthogonal combinations allows
for simpler diagrams as compared to state transition
diagrams. Orthogonal combination constructs support
concurrent events. In Figure 11, the duration of the
turn and whether the eyes can be seen are monitored
at the same time. The transitions out of the state
“R.turning” on the bottom right part depend on which
state you are in on the left side of the dotted line and
the right side.

The timeouts in statecharts allow some timing details to
be represented in the diagram, eliminating the
necessity for the self loops that were necessary in state
transition diagrams. See Appendix D for a statechart of
the whole head turn application.

Hypermedia Authoring Systems
Hypermedia authoring systems make it easy to create
an interactive program using a GUI. We looked at an
example of such a system called Authorware, from
Macromedia. It facilitates making a simple program,
but does not support the passage of time. We
implemented a simplified version of the head turn
example in Authorware. It was relatively easy to use to
create the example and provides constructs to organize
programs in a hierarchical structure similar to
statecharts, but the hierarchy is not always optional.
This causes an explosion of windows while editing or
trying to debug an application making reasoning about

Figure 10. Example of hierarchy in

statecharts.

Figure 11. Example of orthogonal combinations in statecharts.

Figure 12. Timestrip of head turn recognizer.

13

an existing application or debugging an application very
tedious. Figure 14 shows the path of least mediation. In
order to see what happens in the first step, three
windows must be opened (Figure 14). Authorware
provided a good example for how a debugger for an
ACAL program might look, except for the lack of the
ability to express the flow of time.

ACAL Design History
As we looked at the head turn example and explored its
representation in state transition diagrams, statecharts,

Authorware, as well as visual step charts, and
timelines, we determined that a timestrip-based visual
language would offer the best mix of expressivity and
simplicity for representing timing, control flow, and
hierarchy in the design of Active Capture interaction
scripts. We began by creating a state transition diagram
for the head turn application. The state transition
diagram was extremely complicated and motivated us
to design a simpler, better suited language for the task
of describing Active Capture applications. After the
state transition diagram, we tried statecharts, devised
visual step charts, timelines, and finally arrived at a
hybrid visual design combining timelines with control-
flow arrows.

In an effort to tame state transition diagrams and
statecharts, we devised step charts, which serialize the
set of conditions necessary to achieve the desired
result. We decided to try a more constrained,
structured representation in the hope that it would
simplify writing and visualizing Active Capture
interaction scripts. Step charts express the path of
lease mediation as a sequence of steps, where each
step has four parts:

1. The stimulus to motivate the desired result for
the step

2. The desired result for the step
3. The success condition
4. The failure condition (possibly a timeout

condition)

See Figure 15 for an example.

After doing an informal evaluation of step charts with
one of the theater majors on the team, we discovered
that the level of abstraction in step charts was not high
enough. The level of abstraction is higher than that in

Figure 14. Path of least mediation in head turn example in

Authorware.

Figure 14. Windows necessary to see what happens in the

first step in our Authorware implementation of the head turn

example.

14

state machines, but does not provide enough structure
to minimize simple errors. In our informal interview, we
asked the directing major to describe the conditions he
would need to check in order to see if an actor was
running in place. He came up with the following steps:

Make sure the actor is in the frame.
Make sure the actor is standing still.
Make sure the actor is looking at the camera.
Ask the actor to start running in place. (Get the actor
to run in place).

He forgot to make sure the actor was looking at the
camera after running in place (to make sure she did not
run in place and turn at the same time). He also forgot
to make sure the actor was still in the frame. These
mistakes are simple enough that the language should
be able to catch them, or simply not allow them to be
made. This observation led us to our timestrip design.
The timestrip representation allows the ACAL designer
to express the different observations that must be true

in order for the actor to perform the desired action
while minimizing simple mistakes such as remembering
to check to make sure the actor is still looking at the
camera at the end of an action if she was supposed to
be looking at the camera during the whole action.
Timestrips provide a natural way of expressing
concurrent events, temporal relationships, and time
constraints. Control flow on the other hand is not as
naturally expressed. This drawback lead us to a hybrid
design between timestrips and control flow graphs.

Finally, we tried to devise a visual notation that would
combine the most useful properties of the languages
we surveyed and attempted to design. Our hybrid
timestrip design incorporates the concept of multiple
levels of detail, as inspired by statecharts, the control
flow notation from state transition diagrams, the clear
path of least mediation from the simple timestrip and
from step charts, and concurrency, temporal
relationships, and time constraints from timestrips. The
hybrid timestrip provides support for mediation and the
design strategies for the interaction script from the
contextual interviews.

ACAL is a constraint-based declarative language
describing concurrent interactions between a computer
and the outside world. The outside world is modeled in
terms of observable features that may be Boolean,
scalar, or multidimensional values. ACAL makes
decisions based on conditions, which are expressions
that may be true or false; a condition can be
determined by the observation of a feature or by the
passage of a minimum or maximum amount of time.

The visual language for ACAL depicts a program as a
set of rectangular timestrips connected by arrows
representing jumps. The primary timestrip describes

Figure 15. Step chart for head turn

example without mediation. See

Appendix E for a larger version of the

figure.

“Please turn to your
left, stand on the

black marks on the
floor and look straight

ahead”

Get actor to stand still
for > 1.5s

No head motion for
1.5s

4.5s pass
Make sure

actor is
looking away
from camera.

No Eyes
Eyes

“Please turn to look at
the camera”

Get actor to start
turning head within 1s.
Head motion within 1s

2s pass

Get actor to look at
camera within 4.5s.
Eyes detected within

4.5s
4.5 s pass

Get actor to stand
still for .25s.

No head motion
for .25s (1)
3.5 s pass

Make sure actor
is stil looking at

camera.
Eyes

No Eyes

Make sure turn
took at least .9s

>.9s since 1
<.9s since 1

15

the path of lease mediation. A timestrip contains one or
more timelines. Each timeline consists of several
tracks: one for each observable feature, one for stimuli,
and one for capture control. Segments reside on
feature tracks indicating a requirement that the feature
be true or false. The arrangement of segments on a
timeline expresses temporal ordering among the
segments (in any of Allen’s 13 temporal relationships
[8]); segment triggers are then inferred from the
ordering. Time constraints (shown in green, Figure 3
and Figure 5) may be added among the anchors on the
observation segment to indicate how long to wait
before mediating or how long a condition is required to
remain true before mediating. The segments on the
stimulus track and the capture track describe when to
play a stimulus and which parts should be captured.
The timestrips hanging off of the time constraints in
Figure 3 and Figure 5 express the mediation steps that
take place when a time constraint is violated.

ACTION RECOGNIZER TOOL PROTOTYPE
As we sifted through the data from the Wizard-of-Oz
study to design the smile recognizer, we realized we
needed a tool to help us visualize the relationship
between the triggers in the interaction script (i.e.
“Smile”, “Let me tell you a joke”, “A guy walked into a
bar and said ow”) and the data from the multimedia
parsers. We developed a tool based on the visualization
of the action recognizer in ACAL. Figure 8 shows a
video clip of the user smiling and the data from the
multimedia parsers. We designed an interface that
shows all of the data streams together and allows the
designer to annotate where the triggers are in each
sample data as well as which parts of the sample data
are important for the desired action (See Figure 3). The
designer can play back the segment of video she has

annotated in the corresponding data. As the designer
finds a pattern in the data, she should be able to
generalize it on a timeline with a track for each stream of
data she is interested in. As she modifies the pattern on
the timeline, the system should check to see which of
her examples follow the pattern and which do not. The
tool will allow the designer to keep track of all of her
example data and present it to her in a variety of
different configurations to aid in her pattern discovery.

RESULTS
The project had two goals, to develop the SIMS Faces
application, and to study the design of Active Capture
applications.

SIMS FACES APPLICATION
We ran a user study with eight students, all of whom
have pictures on the department web page taken by
the system administrator. In the study with our
implemented SIMS Faces application, we asked the
students to compare their picture taken by the SIMS
Faces application with their picture on the department
webpage. Both pictures were the same resolution and
cropped similarly. Unlike the photos on the departmental
web page, the SIMS Faces photos were cropped
automatically by the system. Seven of the students
preferred the picture taken by the SIMS Faces
application and one student said both pictures were
about the same. In addition to a picture, each student
successfully recorded her name and selected to keep her
recorded name after hearing it. The SIMS Faces
application lowers the cost of iteration, yielding better
pictures. The participants did not mind the iteration
because of the quality of interaction with the application.

16

We are currently working on the next iteration of the
application, and plan to deploy the application with the
next incoming class of masters students.

DESIGN OF ACTIVE CAPTURE APPLICATIONS
The project not only yielded a working application, but
also a design process for Active Capture applications in
general, a set of design strategies for the interaction
with the user and a set of tools to support the design
process.

We plan to bridge the gaps between the set of tool
prototypes developed through our project into a unified
tool to support the design and implementation of Active
Capture applications. This tool will use the visual
language, allowing a diverse team to work together
through the whole design process. In addition, the tool
will help the design team collect and manage data
throughout the design process including the
bodystorming and Wizard-of-Oz phases. With the
bodystorming and Wizard-of-Oz data easily accessible,
the tool will integrate the action recognizer design
support into the tool with the visual language. The
design of an action recognizer will result in a
description in ACAL. The design strategies for the
interaction with the user will continue to be supported
as they are in the visual language, increasing the
quality of interaction between the user and the system.

References

[1] M. Davis, "Active Capture: Integrating Human-
Computer Interaction and Computer
Vision/Audition to Automate Media Capture,"
presented at IEEE International Conference on
Multimedia and Expo (ICME 2003)

[2] J. Heer, N. S. Good, A. Ramírez, M. Davis, and J.
Mankoff, "Presiding Over Accidents: System
Direction of Human Action," presented at
Proceedings of the Conference on Human Factors
in Computing Systems (CHI 2004), Vienna,
Austria, 2004.

[3] M. Davis, "Editing Out Video Editing," IEEE
MultiMedia, vol. 10, pp. 54-64, 2003.

[4] M. Davis and D. Lezitt, "Time-Based Media
Processing System." US Patent 6,243,087.
Continuation of US Patent 5,969,716. Filed:
September 28, 1999. Issued: June 5, 2001.

[5] A. R. Chang and M. Davis, "Designing systems
that direct human action," presented at CHI '05:
CHI '05 extended abstracts on Human factors in
computing systems, Portland, OR, USA, 2005.

[6] A. Oulasvirta, E. Kurvinen, and T. Kankainen,
"Understanding contexts by being there: case
studies in bodystorming," Personal and Ubiquitous
Computing, vol. 7, pp. 125-134, 2003.

[7] D. Harel, "Statecharts: A visual formalism for
complex systems. Science of Computer
Programming.," presented at Science of Computer
Programming, 1987.

[8] J. F. Allen, "Maintaining knowledge about temporal
intervals," Communications of the ACM, vol. 26,
pp. 832-843, 1983.

Acknowledgements
This project would not have been possible without all
the members of our diverse team (listed in Table 2).
Also, thanks to all of the participants in the Wizard-of-
Oz study and the user study at the end. The first author
was supported by an NSF Fellowship.

17

Appendix A: SIMS Faces Application

Eyes
eyes

Framed
framed

Person
person

“Look at camera …” “Great…”

time

>1s <2s

No Eyes

Not Framed

No Person
“Hello? I can’t see you…”

“Mmm, I can’t see all of you …”

“I can’t see your eyes…”

Get user into position

Sound
sound

“Say your name …” “Great…”

time

1-3s <2s

Too Long

Too Short
“Wow, that’s pretty short…”

“I heard you say something, but …”

No Sound
“I didn’t hear anything…”

capture

Record name

“Look at camera, smile …” “Great…”

time

>1s

Motion
“Please stand still …”

No eyes
“I can’t see your eyes …”

Motion
no motion

Eyes
eyes

Mouth Motion
motion

capture

>1s

No Mouth Motion
“You picture will be nicer …”

Take Picture

Legend:
• Interaction Script: Text in quotes

(pink strips). The interaction script
is abbreviated to fit in figure. See
Table 1 for the less abbreviated
SIMS Faces interaction script.

• Action Recognizer: Set of (blue)
segments on (grey) parser strips
and green timing information.

18

Appendix B: Head turn Active Capture module.

Legend:
• Interaction Script: Text in quotes

(pink strips) The interaction script
is abbreviated to fit in figure. See
Table 1 for the less abbreviated
SIMS Faces interaction script.

• Action Recognizer: Set of (blue)
segments on (grey) parser strips
and green timing information.

19

Appendix C: Finite state machine for the head turn Active Capture module.

Legend:
Nodes:

• House (Red): Wait for a
command to play / Play
commands in sequence

• Hexagon (Maroon): Waiting for
capture to start

• Double Octagon (Purple): Wait
for command to play and
mediate

• Trapezium (Blue): Mediation
node

• Diamond (Yellow): Wait for
participant

• Box (Brown): Wait for and
observe participant

• Octagon (Pink): Get input from
participant (observer participant)

Edges:
• Gold: Interaction path with no

mediation (no errors).

20

Appendix D: Complete implementation of the Head Turn application as a statechart [7].

21

Appendix E: Head turn application without mediation as a stepchart.

Legend:
1. (black) the stimulus to motivate

the desired result for the step
2. (blue) the desired result for the

step
3. (green) the success condition
4. (red) the failure condition (possibly

a timeout condition)

