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ABSTRACT 

This paper describes a new approach to the automatic detection of 
human faces and places depicted in photographs taken on 
cameraphones. Cameraphones offer a unique opportunity to 
pursue new approaches to media analysis and management: 
namely to combine the analysis of automatically gathered 
contextual metadata with media content analysis to fundamentally 
improve image content recognition and retrieval. Current 
approaches to content-based image analysis are not sufficient to 
enable retrieval of cameraphone photos by high-level semantic 
concepts, such as who is in the photo or what the photo is actually 
depicting. In this paper, new methods for determining image 
similarity are combined with analysis of automatically acquired 
contextual metadata to substantially improve the performance of 
face and place recognition algorithms. 

For faces, we apply Sparse-Factor Analysis (SFA) to both the 
automatically captured contextual metadata and the results of 
PCA (Principal Components Analysis) of the photo content to 
achieve a 60% face recognition accuracy of people depicted in 
our database of photos, which is 40% better than media analysis 
alone. For location, grouping visually similar photos using a 
model of Cognitive Visual Attention (CVA) in conjunction with 
contextual metadata analysis yields a significant improvement 
over color histogram and CVA methods alone. We achieve an 
improvement in location retrieval precision from 30% precision 
for color histogram and CVA image analysis, to 55% precision 
using contextual metadata alone, to 67% precision achieved by 
combining contextual metadata with CVA image analysis. The 
combination of context and content analysis produces results that 
can indicate the faces and places depicted in cameraphone photos 
significantly better than image analysis or context analysis alone. 
We believe these results indicate the possibilities of a new 
context-aware paradigm for image analysis. 

Categories and Subject Descriptors 
H.5.1 [Information Interfaces and Presentation (e.g., HCI)]: 
Multimedia Information Systems; H.3.1 [Information Storage 
and Retrieval]: Content Analysis and Indexing; H.3.3 

[Information Storage and Retrieval]: Information Search and 
Retrieval; I.4.8 [Image Processing and Computer Vision]: 
Scene Analysis.   

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Clustering, Similarity, Content-base Image Retrieval (CBIR), 
metadata, mobility, GPS, Bluetooth Context-Aware, Face 
Recognition, Cameraphone, SFA, PCA 

1. INTRODUCTION 
For decades researchers in computer vision and multimedia 
information systems have attempted to solve basic problems in 
image content analysis such as face recognition, place 
recognition, and object recognition [17]. Other than in highly 
constrained applications (e.g., mugshot databases in law 
enforcement), purely signal-based approaches to addressing these 
challenges have not yet achieved a level of performance such that 
they are used in web image search today. The opportunity to 
address these unsolved image content recognition challenges in a 
new way is presenting itself in the recent confluence of mobile 
media capture, context-sensing, programmable computation, and 
networking in the form of the nearly ubiquitous cameraphone.  
Cameraphones are rapidly becoming the dominant platform for 
consumer digital imaging worldwide. Technology analysts from 
Future Image Inc. predict that 500 million cameraphones will be 
sold worldwide in 2005, which also means that 5 out of every 6 
digital imaging devices sold in 2005 will be in cameraphones. The 
growing ubiquity of cameraphones and the attendant explosion in 
the number of photos taken worldwide present both a great 
challenge and opportunity for multimedia researchers.  
Cameraphones as a platform for multimedia computing offer us 
the chance to pursue new approaches to media analysis: namely to 
combine the analysis of automatically gathered contextual 
metadata with media content analysis to significantly improve 
image content recognition and retrieval. To better illustrate the 
limitations of the current dominant paradigm in computer vision 
which does not make use of contextual metadata in image 
analysis, consider this lighthearted parable of human perception: 
 “You go out drinking with your friends. You get drunk…really 
drunk. You get hit over the head and pass out. You are flown to a 
city in a country you’ve never been to with a language you don’t 
understand and an alphabet you can’t read. You wake up face 
down in a gutter with a terrible hangover…you have no idea 
where you are or how you got there.”  
This is what it’s like to be most computer vision systems—they 
have no context (and usually little or no memory and are also 
sensory-impaired). Context is what enables us to understand what 
we see. Using contextual metadata automatically gathered from 



cameraphones, we can more closely model the process of human 
image understanding by adding context to multimedia processing 
and retrieval [6, 9].   
In our own research [6,7,8,21], we capture a variety of contextual 
metadata using the sensors readily available on consumer 
cameraphones: temporal (exact time served from the cellular 
network); spatial (CellID from the cellular network and GPS 
location from Bluetooth-connected GPS receivers); and social 
(who took the photo, who sent and/or received the photo when 
shared, and who was co-present when the photo was taken sensed 
via Bluetooth MAC addresses mapped to usernames). We have 
found in our experiments that analysis of such automatically 
gathered contextual metadata for face recognition[8] (the 
person(s) depicted in the photograph) and place recognition (the 
location depicted in the photograph) without any image analysis 
at all outperforms image content analysis alone.  The combination 
of context and content analysis outperforms either one.   

For faces, we demonstrated a significant improvement in retrieval 
precision from 43% precision for Principal Components Analysis 
(PCA) image analysis methods for determining the identity of a 
person depicted in a photo, to 50% precision using Sparse Factor 
Analysis (SFA) of contextual metadata alone, to 60% precision 
achieved by combining contextual metadata analysis with image 
analysis [8]. For location, we achieve a significant improvement 
in retrieval precision from 30% precision for color histogram and 
Cognitive Visual Attention (CVA) image analysis methods for 
determining the location depicted in a photo, to 55% precision 
using contextual metadata alone, to 67% precision achieved by 
combining contextual metadata with CVA image analysis. The 
improvements our results demonstrate over purely signal-based 
analysis techniques are substantial. The combination of context 
and content analysis produces results that can indicate the faces 
and places depicted in cameraphone photos significantly better 
than image analysis or context analysis alone. We believe these 
results indicate the possibilities of a new context-aware paradigm 
for image analysis. 

It is important to note that in our analysis we are solving for the 
location of the subject of the photo, not of the cameraphone. 
Automatically gathered contextual metadata can help us determine 
the location of the cameraphone, but it does not tell us what the 
photographer is pointing the cameraphone at.  
While automatically gathered contextual metadata outperforms 
image analysis alone, by helping reduce the set of images that 
content-based analysis need consider, the two approaches together 
(context and content analysis) can achieve better results than 
either alone.   
In short, context can help content analysis to focus on what are 
the best subsets of photos to analyze, and content analysis can 
help context analysis disambiguate various locations that are 
below the level of its metadata precision. 

1.1 Related Work 
The research of Naaman, et al., uses similar context features as 
our work for identifying human subjects [14]. The key 
differentiator is that we combine contextual analysis with signal-
based face recognition to produce a better result than contextual 
analysis or computer vision alone can provide [8]. Other research 
cited in [8] has explored methods for face image annotation that 
focus on image similarity, thumbnail visualization, and intuitive 

interfaces. Much of this work is focused on annotation interfaces. 
In prior work, a list of candidates is presented for verification 
using a compact interface. New methods in face recognition, such 
as high-resolution images, three-dimensional face recognition, 
and new preprocessing techniques may offer improved accuracy 
[11,15,20], but our context-aware approach utilizes comparatively 
lightweight computation and offers significantly improved 
performance today. 

Timing information has been shown to be effective in clustering 
personal photo collections [11]. Naaman [13] used locational 
metadata as well as time of day and weather information to 
provide contextual cues to users for browsing their photos.  Time 
and content based features (DCT coefficients) are combined by 
Cooper [5] to produce clusters of photos taken at events. In this 
paper, we focus on the use of automatically sensed and inferred 
metadata about the context of photo capture together with 
computer vision analysis of image content to make accurate 
predictions about the locations depicted in cameraphone photos. 
We combine locational metadata derived from the cellID, 
temporal metadata about the time of day and the day of the week, 
and image similarity to identify the location at which photographs 
were taken.   

2. SYSTEM OVERVIEW  
2.1 MMM2: Gathering Data and Metadata 
The MMM2 system uses a client-server software architecture.  A 
single Java-based HTTP server running on a Linux machine 
aggregates data and coordinates photo distribution for multiple 
client applications running on Nokia Series 60 handsets.  The 
server application stores photo metadata and user profile 
information in a relational database accessed by Java servlets 
which interface via HTTP with the Context Logger and the web 
browser running the client handsets. 

2.1.1 MMM2 Context Logger 
The Context Logger is a Symbian application developed by and 
modified in cooperation with the University of Helsinki 
Department of Computer Science Context Project 
(http://www.cs.helsinki.fi/group/context/).  The Context Logger 
runs continuously on the handset and obtains rough location 
information by logging switches between cell towers.  In addition, 
the logger periodically accesses the handset’s Bluetooth radio to 
poll for the presence of nearby Bluetooth devices and to obtain 
precise location information from Bluetooth-enabled GPS devices 
(if available).  Finally, the Context Logger monitors the phone’s 
file system to detect new photographs.  When a new photo is 
detected the Context Logger displays a simple user interface and 
begins to uploading the new photo to the MMM2 server in a 
background process.  If the user selects to share the photo 
immediately, the Context Logger launches the phone’s web 
browser to display an HTML-based user interface generated by 
the server.  In the case of immediate sharing, photo metadata is 
transferred to the server via a URL query string.  If the user opts 
not to share immediately, the metadata is attached to the end of 
the photo upload stream in XML format.  The metadata snapshot 
associated with each photo consists of photo capture time, nearby 
Bluetooth device IDs, cell tower ID and GPS location (if 
available). 



2.2 Creation of Ground-Truth Dataset 
 
The data used for the location dataset came from the previously 
described MMM2 system. The details of the data are listed below. 

 
Table 1. Metadata Types, Sensors, Features, Feature Details 

for MMM2 System 

Type  Sensor Feature Feature Detail 
Weekend/weekday 
Day of week 
Minute of day 
Timeslot (24 overlapping 
2-hour intervals) 

Temporal Cellular 
Network 

Time of 
Capture 

Detail 
Photo 
Owner 

Phone owner (likely to be 
photographer) 

Social MMM2 
Server  

Other 
Users 

Which potential recipients 
are system users at share 
time 

Spatial Cellular 
Network 

Cell ID Cell ID where photo was 
captured 

 
1. Time of Capture—binary values indicating whether or not 

the image was captured on the weekend. Also, the capture 
timeslot (hour of day, 24 values), day of week, and minute of 
the day  

2. Photo Owner—the identity of the photo owner, 66 values 
3. Other Users—recipient is a User, 66 values 
4. Cell ID—the cell ID (426 values) 
 
Each entry in the table describes the type of information, what 
sensor was used to collect it, and what the exact feature was. The 
type column describes where the information sits in relation to 
our view of contextual information. The sensor column describes 
how the information is actually collected from a technical 
perspective. The cellular network provides the phone time 
information and location in the form of the cell tower and cell id 
that the phone connects to. We gathered social information 
(contacts, shares and share frequencies) from the MMM2 server 
that we created.  
 
To create a set of photos annotated with labeled faces we used a 
custom-built Java applet that can be accessed on the web, linked 
from the MMM2 website. The applet allows a user to select a 
region of a photo and associate a person’s name with this region. 
Selecting a region associated with each face rather than simply a 
single point with the face allows this metadata to be used for face 
detection as well as recognition. Users were instructed to select 
regions of the photo containing faces (from ear to ear, forehead to 
chin), which were at least 20-30 pixels wide and in which the face 
is visible enough for the human annotator to recognize it. In an 
effort to create a dense set of annotated photos in which many 
faces appear many times, rather than a sparse set in which many 
faces appear only a few times, we had several MMM2 users 
(primarily from the development team) use this annotation tool to 
annotate as many photos as possible.   
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Figure 1. (Left) Subjects with frontal pose, (Right) Same subjects 

with non-frontal or distorted pose. 

Eleven users total used the annotation tool, seven of which each 
annotated at least 20 photos. The result is a dataset of 1057 photos 
with faces, covering 173 different faces with 31 faces occurring at 
least 10 times each and 58 faces appearing at least 5 times each. 
While only 1057 photos had faces, the annotation process also 
produced a set of nearly 2000 additional photos known not to 
contain faces. While these additional photos are of no use in 
machine vision face recognition, the data can still be used in 
attempting to determine the contexts in which a user is likely to 
be photographing people rather than non-person subjects. 
Examples of the photos taken are shown in Figure 1. Frontal pose 
images represent a small fraction of our face images. 

3. CONTENT ANALYSIS 
3.1  Image Analysis 
Similarity measures are central to most pattern recognition 
problems especially computer vision and the problem of 
categorising and retrieving huge number of digital images.  These 
problems have motivated considerable research into content based 
image retrieval [17] and many commercial and laboratory systems 
are described in the literature [e.g. 4]. There are many approaches 
to similarity and pattern matching and much of this is covered in 
survey papers [20].  

3.2 Cognitive Visual Attention 
Studies in neurobiology and computer vision [12] are suggesting 
that human visual attention is enhanced through a process of 
competing interactions among neurons representing all of the 

 

 



stimuli present in the visual field.  The competition results in the 
selection of a few points of attention and the suppression of 
irrelevant material.   
Such a mechanism has been explored and extended to apply to the 
comparison of two images in which attention is drawn to those 
parts that are in common rather than their absence as in the case 
of saliency detection in a single image [1, 2, 18]. Whereas 
saliency measures require no memory of data other than the 
image in question, cognitive attention makes use of other stored 
material in order to determine similarity with an unknown image. 
The model of Cognitive Visual Attention (CVA) used in this 
paper relies upon the matching of large numbers of pairs of pixel 
groups (forks) taken from patterns A and B under comparison. 
Let a location x in a pattern correspond to a measurement a where 

x = (x1, x2)  and  a = (a1, a2, a3) 
Define a function F such that  a = F(x).   
Select a fork of m random points SA in pattern A where  

SA = {x1, x2, x3, ..., xm}. 
Similarly select a fork of m points SB in pattern B where 

SB = {y1, y2, y3, ..., ym} where 

xi - yi = δ j 
The fork SA matches the fork SB if 

|F(xi) - F(yi)| < ε  ∀ i  for some δ j  j = 1,2, …, N 
In general ε is not a constant and will be dependent upon the 
measurements under comparison ie. 

εj = fj(F(x), F(y)) 
In effect up to N selections of the displacements δj apply 
translations to SA to seek a matching fork SB.   
The CVA similarity score CAB is produced after generating and 
applying T forks SA : 

∑
= ⎩

⎨
⎧

==
T

i

BA
iiAB otherwise

SmatchesSif
wwherewC

1 0
1  

CAB is large when a high number of forks are found to match both 
patterns A and B and represents features that both patterns share.  
It is important to note that if CAC also has a high value it does not 
necessarily follow that CBC is large because patterns B and C may 
still have no features in common.  The measure is not constrained 
by the triangle inequality. 

3.3 Training and Classification 
The similarity values obtained in this way may be used to 

drive a nearest neighbor classifier in which relative similarities 
with class representatives or exemplars determine the location 
classification decisions. The training process consists of the 
selection of representative images or exemplars that characterise 
the pattern class.  

The selection of exemplars that characterise the pattern class may 
be carried out in many different ways and are considered later.  
The most straightforward selection is the visual centre of gravity 
i.e. the pattern GI to which all others in the class i are most 
similar, or rather the pattern with which all others in the class 
share most features in common (matching forks). 

∑
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∈
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The classification Cl(U) of an unknown pattern U is then given by 

RUGR
CUCl max)( =  

Here Cl(U) identifies the class exemplar that shares the most 
features with the unknown pattern.  It is important to emphasize 
that pattern separations are not being measured in a conventional 
feature space in which the features are fixed and extracted in a 
similar fashion from all patterns.  

Instead different features are identified for each specific pattern 
comparison as an integral part of the process of calculating the 
similarity measure.  This approach avoids many of the problems 
which have to be faced when dealing with high dimensional 
feature spaces. 

 
Table 1. Test set classification errors 

 Color 
Histogram 

CVA Random Metadata Metadata 
& 

Histogram 

Metadata 
& 

CVA 
Number of errors / 630 photos 440 434 386 283 248 207 

% Error 70 69 61 45 39 33 
% Reduction in histogram errors _ 2 12 36 44 53 

 

3.4 Visual Sub-cluster Extraction 
The method of selection of a single exemplar from a class of 
training images given in 2.2 will yield an exemplar that represents 
the most self-similar group of images within that class [1].  
However, many different photos may be captured at each location 
and the location class is represented more realistically by several 
sub-clusters that contain similar content but are different from 
each other.  Adding more exemplars in a conventional feature 
space does not necessarily guarantee improvements in classifier 

performance because although some errors are corrected often 
many new ones are introduced because of the fixed spatial 
relationships imposed by the metric used.   

In this work new exemplars will generate errors only if they share 
comparatively many features (forks) with the error patterns, 
which would in turn imply some visual similarity and therefore 
some justification for the errors. Exemplars representing sub-
clusters of similar images may be extracted from the separation 
matrix CPQ by identifying those images that are dissimilar to 



exemplars already selected but similar to others in the class. We 
generate a difference similarity matrix 

1PGPQPQ CCC −=′
 

where G1 is the first exemplar image.  Positive values in this 
matrix indicate similarities between images that have few features 
in common with G1. Images which have many such associations 
are candidates for a sub-cluster exemplar G2.  

Let                                  

∑ ′= −

∈ Q
QPIP

CG 1
2 max

 

G2. corresponds to the image having the greatest column total and 
therefore the largest number of features in common with others 
whilst having little similarity with G1. 
 
In a similar fashion a succession of sub-cluster exemplars (Fig. 2) 
may be produced: 
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3.5 Color Histogram Techniques 
One of the most popular techniques used in content based image 
retrieval employs color histograms mainly because of its 
simplicity and computational speed [17].  Pixel color distributions 
are generated that form feature vectors corresponding to each 
image.  In its simplest form the distances between the feature 
vectors give an indication of the similarity of the respective 
images. 

This approach is quite effective on some image databases, but 
unless scene geometry is also incorporated it is easy to see that 
large classes of different patterns will not be separated by this 
approach. As before classification of image U is given by 

RUGR
DUCl min)( =  

where                          ∑
=

−=
B

i

P
i

Q
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and B is the number of color bins.  B = 64 in the results (Table 1).  

Color histograms are used as an alternative similarity measure 
with which to compare the performance of the CVA algorithm.  

 

  

  

  
Figure 2. Visual sub cluster example corresponding to an 

exemplar (first image). 

3.6 Face Recognition  
Face recognition has long been the standard for identifying 
humans in images. Current methods attempt to detect key facial 
features such as eyes, nose, and lips, and match these features to 
known templates for human faces. Evaluation of these methods 
usually occurs with frontal facing images, such as those shown in 
the left column of Figure 1. Problems occur when facial imagery 
is not frontal as in the right column in Figure 1. Most of the 
images in this research were taken in natural settings with limited 
frontal pose. We tested 4 publicly available face recognition                       
systems implemented by Colorado State University (CSU - 
http://www.cs.colostate.edu/evalfacerec/): 

• PCA: Eigenfaces principle components analysis based 
on linear transformations in feature space. PCA requires 
a short training time and uses a relatively small 
dimensionality of feature vectors. Many distance 
measures can be used, but we received the best 
accuracy with Euclidean and Mahalanobis. 

• LDA+PCA Combination: Linear discriminant analysis 
based on the University of Maryland algorithm in the 
FERET tests. LDA training requires multiple images 
and first using PCA to reduce the dimensionality of the 
feature vectors.  

• Bayesian MAP: Maximum a posteriori (MAP) 
difference classifier based on the MIT algorithm 
developed by Moghaddam and Pentland. This algorithm 
examines the difference image between two photos to 
determine whether the two photos are of the same 
subject. 

• Bayesian ML: Maximum likelihood (ML) classifier 
based on the same MIT algorithm above.  



3.7 Predicting Faces Using SFA 
We used Sparse Factor Analysis (SFA) to combine the various 
contextual factors and metadata to predict which faces occurred in 
each photo. SFA is a linear probabilistic model that deals 
correctly with missing data. SFA was shown in [3] to be the most 
accurate method on standard collaborative filtering data (the 
EachMovie dataset). SFA is a generative probabilistic model, 
whose parameters are computed using expectation maximization 
(EM). Since it is a full generative model, it has a prior which 
serves as a regularizer. On instances where there is less evidence, 
the prior distribution exerts more influence and the algorithm is 
more conservative in its predictions. This works well on datasets 
with missing information. Our dataset contained cases were data 
was missing or not always available, for example the Bluetooth 
co-presence information.   
Because SFA is a linear model, it also gives a direct means to 
infer the probable influence of particular metadata on the 
predictions. SFA is described formally as a model: 
 

Y = m X + N 
 

Where Y is a vector of (partially) observed values, X is a latent 
vector representing user preference, m is the “model” predicting 
user behavior, and N is a noise function. Y and X are assumed to 
be real-valued vectors. N is assumed to be multivariate, 
independent Gaussian noise. X is assumed to have a Gaussian 
prior distribution. All observed data are encoded as fields in the Y 
vector. All the data except for the computer vision output were 
discrete values. Each k-valued discrete input was encoded as k 
fields in Y that were binary value predicates. For instance, if there 
were 22 possible users, the third user would be represented as a 
22-tuple in Y as (0, 0, 1, 0, 0, … 0). This departs somewhat from 
the ideal model for SFA, but the model was still able to produce 
useful predictions, as we will see in a moment.  

We use SFA to combine all the contextual factors, metadata and 
data we gathered from computer vision. Our algorithm uses the 
data gathered from computer vision as another input for 
generating predictions. The computer vision data were real 
values, which correspond to the similarity metric between a face 
image in the test dataset, and another image in the training 
dataset. As well as known values, any field in a Y vector can be 
presented to the algorithm as an “X” meaning the value is 
unknown. This is how partial or missing data is received.  

The SFA method requires two phases. In the learning phase, the 
EM recurrence is run on a training set of Y vectors to determine 
the most likely value of the model parameters including the 
matrix m. Training data will include all metadata fields, the 
results of computer vision algorithms, and the actual user identity 
(assuming this is known). In use, the algorithm will receive all 
contextual metadata and the results of computer vision analysis of 
the photo. From these partial observations Y and from the model 
parameters, a single E-step is used to determine the expected 
value of X for that instance. This X value is then used to predict 
all missing Y-values directly from the model equation above. 
These missing values will predict the identities of faces in the 
photo. This prediction is the MAP prediction for the missing data 
given the model. 

3.8 GPS Clustering  
Our algorithm was unable to directly utilize the GPS coordinate 
of our geo-referenced photos, so we had to change them to a more 
suitable format. We decided to create two sets of clusters of GPS 
coordinates, one using k-means and the other using farthest first 
clustering. We ran both of these algorithms over the entire dataset 
with the goal of creating 100 clusters for each algorithm. We 
chose the algorithms and the number of clusters to provide 
clusters whose centroids approximated the geographical spread of 
the geo-referenced photos. After clustering, we calculated the 
geographical distance between each geo-referenced photo and the 
various cluster centroids and used that value to connect each 
photo to its nearby clusters. 

4. EXPERIMENTAL DATA 
4.1 Face Recognition on Cameraphone Data 
Face recognition is highly dependent on frontal pose and not well 
suited for cameraphone photos. The quotidian use and portability 
of a cameraphone leads to a capture environment that is often 
more varied than that of photos of human subjects captured with 
conventional cameras. Cameraphone users often take spontaneous 
photos [8, 21] often with non-frontal subjects, as shown in the 
bottom row of Figure 1. The low resolution and slow shutter 
speed of current cameraphones, which creates motion blur, or 
grainy photos in poor lighting conditions, also reduces face 
recognition accuracy. The much higher accuracy of the same 
vision algorithms we use in our study in face recognition trials 
using the NIST FERET dataset 
(http://www.frvt.org/FERET/default.htm) may be attributed to the 
“mug shot” quality of the photos in the NIST FERET corpus, i.e., 
each photo is of people depicted in full frontal view in a head-
and-shoulders shot. Our MMM2 corpus of over 27,000 
cameraphone photos collected by our 66 users over 10 months 
shows much greater variability of photo conditions and often has 
multiple people depicted per photo—as such, our study attempts 
to test the “real world” accuracy of face recognition algorithms 
and approaches.  

4.2 Photographic Location Data 
1209 images were taken using Nokia 7610 cameraphones in 12 
different locations and 30 cell identities in and around the 
Berkeley Campus at a variety of times, by a number of different 
people without any specific instructions.  No sifting of the data 
was carried out and many of the photos were blurred, mis-
oriented, or taken in very poor light.  All locations were covered 
by more than one cell.  The metadata associated with each data 
item was extended to include a manually generated location label 
for evaluation purposes. 

5. EXPERIMENTAL DESIGN  
To evaluate context-enabled face prediction, we used a dataset 
gathered from 11 users over 9 months. We built a table of Y 
vectors, each representing a photograph taken by a user. There 
were 1057 photos total. The set of photos was randomly 
partitioned into a training set of 337 photos and a test set of 720 
photos. The total number of faces was 1402, with 424 used for 
training and 978 for testing. For each face, 8 photos were taken at 
random and 4 photos were selected manually for the training set. 
Manual selection was done to insure a sufficient number of visible 



faces in the training set. We will automate this process in future 
work. The photos in the training set were hand-labeled with the 
names of actual individuals in each photo. The resulting set of 
images will be the “training gallery.” There were a total of 173 
different individuals pictured in the training gallery. The test 
images were similarly annotated and partitioned. Each photo 
contained images of 1 to 4 people. The training gallery contained 
2-4 images of each subject on average.  

For the face recognizers, the test images were again partitioned 
into distinct faces images. Each photo record has 173 fields (for a 
particular recognizer), which correspond to the possible subjects 
in the image. In field number k, we place the value of the metric 
distance between a face in the test image and face number k from 
the training gallery. Since there may be multiple faces in the 
photo, we used the min of distances between all images in the 
photo, and training gallery image k. In almost all cases, the actual 
best match between gallery images and test photo involves that 
lowest weight edge.  

The context data is listed in Table 2. 

Table 2. Context Data Features 

Feature Value 

1.  Weekend or Weekday capture Binary 

2. The capture timeslot (hour of day) 24 binary values

3. The identity of the photo owner 11 binary values

4. Was the photo taken indoors or outdoors Binary 

5. The cameraphone cell ID 426 binary values

6. GPS location value, farthest first clustering 100 binary values

7. GPS location value, k-means clustering 99 binary values

8. Identities of people in the photo 173 values 

9. The ID of the photo sharing recipient ID value 
10. Bayes MAP comparison metrics for each 

candidate face 173 real values 

11. Bayes ML comparison metrics for each 
candidate face 173 real values 

12. LDA comparison metrics for each 
candidate face 173 real values 

13. PCA comparison metrics for each 
candidate face 173 real values 

5.1 Running the Experiments 
We trained the SFA model in two different ways: first using all 
contextual metadata and the face recognizer outputs, secondly 
using the contextual metadata only. To evaluate the results, we 
used precision-recall plots. We also formed precision-recall plots 
for each of the computer vision algorithms individually, using the 
negative of the metric distance as the face predictor. In both cases, 
the model dimension used was 40. Training time was about 2 
minutes. Training for the Bayesian classifiers took about 7 hours. 
PCA and LDA classifiers trained in less than 10 minutes. Face 
recognition testing takes less than one minute for all 4 algorithms. 

6. EVALUATION 

6.1 Location by Contextual Metadata 
A training set of 579 images were randomly selected from the 
total set of 1209 and 33 exemplars selected representing visual 
sub-clusters across the locations. The remaining 630 data items 
were used as a test set in the results described below.  In addition 

the distributions of metadata attributes i
jka  for each location i 

were extracted from the 579 items where 
Hours of the day 24...,,11 =kai

k
 

Weekday 7...,,12 =kai
k

 
Cell identity 30...,,13 =kai

k

 
 

Normalized distributions were extracted across the 12 locations 
for each attribute value. Photos were then classified by summing 
the attribute distributions across locations corresponding to the 
metadata values of the photo U and selecting the location with the 
highest value: 

∑−=
j

R
jKR

aUCl 1max)(  

where K corresponds to the respective attribute values of U. 

6.2 Location by Metadata and Vision 
Contextual metadata or visual features alone are incapable of 
precisely determining location, but in combination a better result 
should be attainable than either approach in isolation, Table 1.   
The metadata attribute distributions for candidate images U were 
augmented with a normalized and weighted vector iv  i = 1,…,12 
where 

∑
==

=
j

UGjRUGiRi RR
CCv maxmax.α  and α is a constant. 

7. DISCUSSION AND RESULTS 
7.1 Face identification Experimental Results 
The margins in precision/recall among the different methods are 
quite large. Context+Vision does better than any individual 
predictor. Its initial precision is about 60% and is fairly flat across 
the recall range, as seen in Figure 3. The precision-recall curve 
has an unusual shape, but that is caused by the very small number 
of faces to be retrieved for each photo (one to four). The curve’s 
flatness shows that the precision does not decrease very much 
between the best match and second, third, fourth best. Steps in the 
curve appear at 1/2, 1/3, 2/3, 1/4 etc. corresponding respectively 
to photos with 2, 3, 3, 4 users. The sharpest drop is at ½, which is 
intuitive given that there are quite a few more images of two 
people than three or four, and also the sharpest accuracy drop is 
likely to occur between the best and second-best face images.  
Context-only prediction (without the aid of computer vision) has 
50% initial precision, and a similar slow fall-off. The best vision 
method was PCA, which was much better than the other vision 
predictors at around 43%. The other three are quite similar to each 
other, with LDA doing a little better than the two Bayes 
predictors, which were around 30%. The PCA Euclidean measure 
was the simplest and performed the best. This was surprising 



considering this measure performed roughly 15% worse with 
earlier CSU experiments using the NIST FERET data. It may be 
that PCA is more robust for use with real world datasets; this 
hypothesis deserves further study. 

 
Figure 3. Face Recognition Results from Different Algorithms. 

 

7.2 Location Identification Experimental 
Results 
Images were classified using the histogram classifier, the CVA 
classifier and metadata classifiers alone.  Not surprisingly the 
vision systems performed badly because the image set was 
extremely diverse and contained many images which from their 
appearance could have been taken in any of the 12 locations.  In 
fact a random classifier based on the frequencies of photos taken 
at each location performed better.  The metadata performed 
surprisingly well not just because the cell IDs helped to limit the 
errors, but also because it was apparent that activities were taking 
place at certain times of the day and days of the week that 
distinguished among various locations for those activities.  

Table 3. Error Rate Increase Per Feature Removed 

Feature Removed Rise in error rate 

Weekday 0.046 

Hour of day 0.116 

Cell ID 0.117 

 
The relative value of the contextual categories was tested by 
removing one at a time and noting the percentage increase in error 
rate for the metadata plus CVA classifier.  Removal of the 
weekday category gave rise to a 4.6% rise in error rate, and the 
time and cell identity led to rises of 11.6% and 11.7%, 
respectively (Table 3).  So both time and the cell identity were 
important and contributed equally towards correct location 
decisions. 
Both combined vision and metadata classifiers reduced errors 
mostly in locations with overlapping cell coverages. Detailed 
study of the errors indicated that many images were visually 
dissimilar to all the exemplars and so in these cases the visual 
attributes did not contribute towards the classification decision.  
We expect that as the image collection accumulates, more visual 

sub-clusters will emerge and performance will improve with the 
addition of more exemplars.   
It should be emphasized that the material in these experiments is 
not from personal collections, where time and date of image 
capture alone provides a natural attribute for accurate clustering, 
but from an image collection of many users in which contextual 
metadata (spatial, temporal, and social) can be used to determine 
both individual and group clusters in space-time.   

8. CONCLUSIONS & FUTURE WORK 
This paper has described a new approach to the automatic 
identification of human faces and location in mobile images.  It 
has shown that the combination of attributes derived from both 
contextual metadata and image processing produces a measure 
that can indicate the location at which photos were taken.  In 
particular, the CVA similarity measure together with the 
unsupervised cluster extraction promises to be applicable to larger 
sets of data. 

Our future experiments will investigate torso-matching for 
detecting subjects in multiple photos taken at the same location 
and time [19] as well as the integration of additional context and 
content analysis techniques.  We will also plan to combine our 
context-aware face recognition research with our context-aware 
location recognition research to create a comprehensive solution 
for mobile media management. 
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